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Outline

Framework for QCD at colliders: factorization and universality;
review of pQCD formulae
Example #1: e+e- → hadrons at NLO; infrared singularities; 
the Sudakov form factor and the parton shower; jets
Example #2: deep-inelastic scattering; factorization of IR 
singularities; DGLAP evolution; PDFs and their errors
Example #3: Higgs production in gluon fusion; why NLO
corrections can be large; effective field theory; integration-by-parts
Survey of advanced topics at the LHC: matching fixed-order 
and parton showers; techniques for multi-leg LO and NLO; 
calculations at NNLO



Status of  pQCD

SU(3) gauge theory of QCD established as theory of Nature

Predicted running of αs established in numerous 
experiments over several orders of magnitude

2004: Gross, 
Politzer, WilczekWhy do we still care about QCD?



The revolution crushed

Enormous challenge 
to understand signal, 
background to be 
sure of discovery!

Do we understand the QCD 
shape prediction for W/Z+jets?
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NN Output

What is the 
QCD 
prediction for 
the di-boson 
production 
rate?

ATLAS TDR: S/B >10
Current: S/B∼2



Collisions at the LHC

A lot going on...

New physics at hard scale; MH for 
example
Parton shower evolution from MH 
to ΛQCD
Final state hadronization at ΛQCD
Parton distribution functions at 
ΛQCD
Multiple parton interactions, 
hadron decays, ...

How does one make a prediction for such an event?



Divide and conquer

time scale: τproton ∼
1

ΛQCD︸ ︷︷ ︸

︷ ︸︸ ︷
time scale: τhard ∼

1
Q

σh1h2→X =
∫

dx1dx2 fh1/i(x1;

factorization scale︷︸︸︷
µ2

F )fh1/j(x2;µ2
F )

︸ ︷︷ ︸
PDFs

σij→X(x1, x2, µ
2
F , {qk})︸ ︷︷ ︸

partonic cross section

+ O
(

ΛQCD

Q

)n

︸ ︷︷ ︸
power corrections

Make sense of this with factorization: separate hard and soft scales

Non-perturbative but universal; 
measure in DIS, fixed-target, 
apply to Tevatron, LHC

Process dependent but 
calculable in pQCD

Small for sufficiently 
inclusive observables

Review of factorization 
theorems: Handbook of 
pQCD, cteq.org; 
Collins, Soper, Sterman 
hep-ph/0409313



Recipe for a QCD prediction

Calculate σij→X

Evolve initial, final states to ΛQCD using parton shower
Connect initial state to PDFs, final state to hadronization



Recipe for a QCD prediction

Calculate σij→X

Evolve initial, final states to ΛQCD using parton shower
Connect initial state to PDFs, final state to hadronization

How precisely must 
we know σ?

Do we know how to 
combine σ, parton shower?

Do we have hard jets?  
Parton showers assume soft/

collinear radiation

Do we know the PDFs in the 
relevant kinematic regions?

Are our observables inclusive  or 
must we worry about large logarithms?



Field theory of  QCD

Review of the basic formulae from SU(3) gauge theory of QCD

A=1,...,8; gluon in adjoint rep.

strong coupling constant

anti-symmetric structure constants

a=1,...,3; quark in fundamental rep.

Basic group theory facts: Rξ gauge-fixing term:

Lgauge =
1
2λ

(
∂αAA

α

)2

L = −1
4
FA

αβFαβ
A +

∑

flavors

q̄a (i "D −m)ab q + Lgauge + Lghost

FA
αβ = ∂αAA

β − ∂βAB
α − gsf

ABCAB
α AC

β

(Dα)ab = ∂αδab + igst
C
abA

C
α

TrtAtB =
1
2
δAB

∑

A

(
tAtA

)
ab

= CF δab, CF =
N2 − 1

2N
=

4
3

∑

A,B

fABCfABD = CAδCD, CA = N = 3



Feynman rules



The running coupling

Renormalization of ultraviolet divergences introduces a 
logarithmic dependence of αs=gs2/4π on energy scale

Asymptotic "eedom: small at high energies, we can 
compute in perturbation theory
Coupling constant blows up at scale ΛQCD,
Expect confinement, hadronization to occur at 
distances L ∼ 1/ΛQCD



Example 1: e+e- to hadrons at NLO



The basics: IR singularities in e+e-

Many QCD issues relevant to hadronic collisions appear here.

Time scale for f+f- production: τ∼1/Q
Time scale for hadronization: τ∼1/Λ

R→ 3
∑

q

Q2
q (below Z-pole)

PDG

R

R =
σ (e+e− → hadrons)
σ (e+e− → µ+µ−)



The basics: IR singularities in e+e-

Many QCD issues relevant to hadronic collisions appear here.

Time scale for f+f- production: τ∼1/Q
Time scale for hadronization: τ∼1/Λ

R→ 3
∑

q

Q2
q (below Z-pole)

PDG

Goal: get the red line (or 
at least 1-loop pQCD)R

R =
σ (e+e− → hadrons)
σ (e+e− → µ+µ−)



Real emission corrections

What can happen in field theory?  Can emit additional gluon.

Work through this; since production part of e+e-→hadrons, μ+μ- 
identical, can just consider γ*→hadrons, μ+μ- and form ratio

Leading-order matrix elements, phase space:

R0 =
σhadrons

σµ+µ−
=

[
|M̄0|2 × PS0

]
hadrons[

|M̄0|2 × PS0

]
µ+µ−

= Nc

∑

q

Q2
q

|M̄0|2 =
1
3
|M0|2 =

4e2Q2
F Nc s

3

PS0 =
1

2
√

s

1
(2π)2

∫
ddp1d

dp2δ(p2
1)δ(p

2
2)δ

(d)(pγ − p1 − p2) =
Ω(3)

64π2
√

s

CM energy2

3-d phase space



Real-emission phase space

PS1 =
1

2
√

s

1
(2π)5

∫
ddp1d

dp2d
dpgδ(p2

1)δ(p
2
2)δ(p

2
g)δ

(d)(pγ − p1 − p2 − pg)

Work in γ* CM frame
Introduce x1=2E1/√s, x2=2E2/√s

Gluon carries no energy

Anti-quark carries no energy

Quark carries no energy

PS1 =
√

s
Ω(2)Ω(3)
64(2π)5

∫
dx1dx2 = PS0 ×

s

16π2

∫
dx1dx2



Real-emission matrix elements

|M̄1|2 = 2CF g2
s
|M̄0|2

s

{
s1g

s2g
+

s2g

s1g
+ 2

s s12

s1gs2g

}

= 2CF g2
s
|M̄0|2

s

x2
1 + x2

2

(1− x1)(1− x2)

Rqq̄g
1 = R0 ×

2g2
sCF

16π2

∫ 1

0
dx1

∫ 1

1−x1

dx2
x2

1 + x2
2

(1− x1)(1− x2)
➩ Singular for x1,2 →1

sij=(pi+pj)2

s1g = 2E1Eg (1− cos θ1g)
s2g = 2E2Eg (1− cos θ2g)

collinear singularities for pg || p1, pg || p2

soft singularities when Eg=(1-x1-x2)√s→0



Dimensional regularization

Taking d from 4 →4-2ε regulates both UV and IR divergences 
while maintaining gauge symmetries
Coupling constant becomes dimensionful: gs2→gs2μ2ε

For ε slightly negative, regulates 1/(1-x1,2)

|M̄1|2 → 2CF g2
s
|M̄0|2

s

{
(1− ε)(x2

1 + x2
2) + 2ε(1− x3)

(1− x1)(1− x2)
− 2ε

}

also recomputed in d-dimensions

PS1 → PS0 ×
s

16π2

1
Γ(1− ε)

[
s

4πµ2

]−ε ∫
dx1dx2



 (1− x3)︸ ︷︷ ︸
x3=2−x1−x2

(1− x1)(1− x2)





−ε

Rqq̄g
1 = R0 ×

2g2
sCF

16π2Γ(1− ε)

[
s

4πµ2

]−ε ∫ 1

0
dx1

∫ 1

1−x1

dx2

{
(1− ε)(x2

1 + x2
2) + 2ε(1− x3)

(1− x1)(1− x2)
− 2ε

}

× [(1− x1)(1− x2)(1− x3)]
−ε



Infrared poles and KLN theorem

Evaluate integrals to find:

Regulator dependent!  Not a physical observable.
KLN theorem: singularities cancel if degenerate energy states
summed over ⇒ as gluon becomes soft or collinear, 
indistinguishable from virtual corrections, must add loops...

double pole: soft+collinear gluon single pole: soft or collinear gluon

Rqq̄g
1 = R0 ×

αsCF

2πΓ(1− ε)

[
s

4πµ2

]−ε {
2
ε2

+
3
ε

+
19
2
− π2 +O(ε)

}



Virtual corrections

Rqq̄
1 = R0 ×

αsCF Γ(1 + ε)
2π

[
s

4πµ2

]−ε {
− 2

ε2
− 3

ε
− 8 + π2 +O(ε)

}

As required by the KLN theorem, poles cancel upon addition 
of real and virtual corrections, leaving:

R = R0 + R1 +O(α2
s) = R0 ×

{
1 +

αs(µ)
π

}



Virtual corrections

Rqq̄
1 = R0 ×

αsCF Γ(1 + ε)
2π

[
s

4πµ2

]−ε {
− 2

ε2
− 3

ε
− 8 + π2 +O(ε)

}

As required by the KLN theorem, poles cancel upon addition 
of real and virtual corrections, leaving:

(A note about scaleless integrals: 
∫

ddk
1

[k2]n
∝ 1

εUV
− 1

εIR
= 0

Very useful as long as you don’t specifically care about the pole coefficients...)

R = R0 + R1 +O(α2
s) = R0 ×

{
1 +

αs(µ)
π

}



Scale dependence

Coupling constant depends on the parameter μ ⇒ dependence 
must vanish if we can compute to all orders

Can predict μ dependence of R2

R(2) = R0 + R1 + R2 +O(α3
s)

d R(2)

d lnµ
=

d R1

d lnµ
+

d R2

d lnµ
= −2α2

s
b0R0

π
+

d R2

d lnµ

⇒ R2 = α2
s
b0R0

π
ln

µ2

s
+ (µ independent)

dR(n)

dµ
∝ [αs(µ)]n+1

d αs(µ)
d lnµ

= −εαs + β(αs)

β(αs) = −2 b0α
2
s +O(α3

s)

b0 =
33− 2NF

12π



“Theoretical error”

Variation of scale in some specified range is often used as an 
estimate of theoretical uncertainty ⇒ if it was calculated to higher
orders, this dependence would vanish

from Ellis, Stirling, Webber
QCD and Co$ider Physics

Conventional range: √s/2≤μ≤2√s
Often underestimates LO→NLO, 
especially at hadron colliders where 
qualitatively new effects can appear
at higher orders
How to pick central value with 
multiple physical scales?



Eikonal approximation

Useful to have diagnostic tools to check pieces of a calculation:
‘eikonal’ approximation for soft gluons gets double pole

= ūi(p1)
[
iMij

0

]
vj(p2)

= ūi(p1)
{

igs !εa
gT a

ij
i(!p1+ !pg)
(p1 + pg)2

[
iMjk

0

]}
vk(p2)

≈ −gs
p1 · εa

g

p1 · pg
ūi(p1)

{
T a

ij

[
iMjk

0

]}
vk(p2)

Simplifies upon 
squaring matrix 
element; phase space 
also simplifies

color-connected Born amplitude; Ta operator 
has different expressions for quarks, gluons

from Harris & Owens hep-ph/0102128, 
a useful reference for relevant formulae

soft region in gluon energy



Eikonal approximation

Application to the current process yields:

The 1/ε2 poles must cancel against virtual corrections

agrees with our full calculation Cutoff dependence must 
cancel against other regions 
of gluon phase space

Rqq̄g
1,soft = R0 ×

αsCF

π

Γ(1− ε)
Γ(1− 2ε)

(
s

4πµ2

)−ε {
1
ε2
− 2

ε
ln δ + 2 ln2 δ + finite

}



Collinear approximation

Another singular region to consider: collinear gluon emission.  A
simple way of calculating this phase-space region also exists. 
Study the region p1 || pg.

Both matrix elements, phase space simplify. 

s1g=(1-x2)s
Eg=(1-x1)√s/2

already looked at soft gluons, restrict x1≤1-δ
collinear region s1g≤ δcs ⇒ x2≥1-δc

Rqq̄g
1,1||g → R0 × αs

2π

1
Γ(1− ε)

[
s

4πµ2

]−ε ∫ 1

1−δc

dx2 (1− x2)
−1−ε

∫ 1−δ

0
dx1 [x1(1− x1)]

−ε

×





CF

1 + x2
1

1− x1︸ ︷︷ ︸
Pqq(x1)

+ε [−CF (1− x1)]︸ ︷︷ ︸
P ′

qq(x1)






= R0 ×
αs

2π

1
Γ(1− ε)

[
s

4πµ2

]−ε {
1
ε

(
3
2

+ 2 ln δ

)
− ln2δ − 3

2
ln δc − 2 ln δ ln δc + finite

}

only collinear emission only hard gluons

Unregulated 
splitting function

cancels against soft region (with 2||g also)reproduces full result (with 2||g also);
cancels against virtual corrections



Phase-space slicing

The splitting functions are universal, arbitrary matrix elements
factorize in the collinear region. 

Forms the basis of an NLO subtraction 
scheme known as phase-space slicing
Split full=soft+∑(collinear)+hard; eikonal
+collinear approximations to get singularities
Numerical integration of hard region; 
dependence on ln(δ), ln(δc) must cancel



Parton Showers and Jets



Sudakov form factor

Let’s study again our real-emission cross section in the collinear 
limit, setting d=4.

Focus on collinear region 1||g. Think of 1/σ0×dσqqg as the 
probability of emitting gluon in interval dt.  Also consider 
probability of no emission.

dσqq̄g
collinear → σ0

αs

2π
dz Pqq(z)

∑

t=s1g,s2g

dt

t
⇒ independent emission of 
gluon from quark, anti-quark

⇒ this exponentiates:
dP =

dt

t

αs

2π

∫
dz Pqq(z)

dPno = 1− dt

t

αs

2π

∫
dz Pqq(z)

Sudakov form factor, probability of no 
emission with invariant mass between 
upper, lower invariant masses. 

∆(t) = exp

{
−

∫
dt

′

t′
αs

2π

∫
dz Pqq(z)

}



Kinematics of  the form factor

Let’s derive the limits of integration for Δ.  Demand invariant
masses be greater than some cutoff t0

Decompose momenta into 
light-cone components:

Collinear emission of pb,c:

pµ =
nµ

2
p+ +

n̄µ

2
p− + pµ

T

nµ = (1,!0, 1)
n̄µ = (1,!0,−1)
p2 = p+p− − !pT

2

pµ
b = zp+

a
nµ

2
+ pµ

T + p−b
n̄µ

2

pµ
c = (1− z)p+

a
nµ

2
− pµ

T + p−c
n̄µ

2
same as definition of z in example

smaller components

!pT
2 = z(1− z)p2

a − (1− z)p2
b − zp2

c > 0

z(1− z) >
t0
t

Constraints:

∆(t) = exp

{
−

∫ t

2t0

dt
′

t′
αs

2π

∫ 1− t0
t
′

t0
t
′

dz Pqq(z)

}



Parton shower Monte Carlo

Can use to correctly (within collinear approximation) generate 
the emission of multiple partons (HERWIG, PYTHIA, SHERPA)

Not limited to invariant mass as an evolution variable; t=E2(1-cosθ),
others possible

Generate r=Δ2/Δ1 ∍ [0,1], solve for t2⇒evolves 
from t1 to t2 without emission
Generate energy fraction carried away by 
emission
Continue evolution with the two additional 
partons generated
Stop each evolution when r< Δ1

∆i(t) = exp




−
∑

j

∫
dt

′

t′

∫
dz

αs

2π
Pji(z)








Leading logarithms

Parton showers additionally resum leading logarithms that appear
in the perturbative expansions of distributions

T = max
∑

i |!pi · !n|∑
i |!pi|

Near T=1:
1
σ

dσ

dT
≈ αsCF

π

1
1− T

ln
1

1− T

Leading terms of the form 
αSn ln2n-1(1-T)/(1-T) 
resummed to all order in 
parton shower

resummed

fixed-order

from Catani et al., NPB407 (1993)

R(τ) =
∫ 1

τ
dT

1
σ

dσ

dT

R(τ) ∼ exp
{
−αsCF

π
ln2(1− τ)

}



Jets

End-product partons fed into model of hadronization

Should be a way to 
describe energy deposits 
without mention of 
specific hadrons: jets
Specify a jet algorithm 
for combining the 
observed particles
The idea: the jets should 
reflect the primordial 
hard partons

from G. Salam, 0906.1833, 
a useful review from which 
I will borrow



The cone

Basic idea: draw a cone around the clusters of energy in the event

Start with seed particle i (how to choose seeds?)
Combine all particles within a cone of radius R

Use the combined 4-momentum as a new seed
Repeat until stability achieved

∆R2
ij = (yi − yj)2 + (φi − φj)2 < R2

rapidities azimuthal angles

Iterated cones:

Progressive removal (IC-PR): start with largest transverse momentum as seed; 
after finding stable cone, call it a jet and remove; go to next largest pT
Split-merge  (IC-SM): first iterate all particles to find stable cones 
(``protojets”); consider pT shared by protojets; if no shared pT, call it a jet and 
remove; if pTshared/pT2nd-hardest>f, merge protojets; repeat

Examples:



Infrared safety

We saw before that IR singularities cancel between real, virtual
corrections ⇒ in"ared safety.  Jet algorithm shouldn’t spoil this 
cancellation.  Both examples on previous slide do.

✘ IC-PR algorithm starts from 
different seed after emission of a 
hard collinear parton

seeds

✘ IC-SM algorithm contains new protojet 
after soft emission, that overlaps with 
other two; eventually merged

✘``Midpoint-cone” (include 
midpoint between stable cones as 
protojets) also IR unsafe



Consequences and the seedless cone

Consequence: 1/ε → ln(pT/ΛQCD) ∼1/αS ⇒ no suppression of 
higher-order contributions, no expansion possible

Can modify algorithms so that addition of soft particles doesn’t
modify hard jets in the event: SIScone (seedless infrared safe) 
Salam & Soyez 0704.0292 and refs. within

Situation for midpoint cone, from Salam & Soyez 0704.0292



Sequential recombination

kt algorithm:

Generalizations use a slightly different distance measure

Roughly, soft and collinear emissions come with small distance 
measure and are always recombined ⇒ IR safe

dij = min(p2
ti, p

2
tj)

∆R2
ij

R2

diB = p2
ti

Work out all dij, diB, find minimum
If it is a dij, combine i and j and restart
If it is a diB, call i a jet and remove it
Stop after no particles remain

dij = min(p2p
ti , p2p

tj )
∆R2

ij

R2

diB = p2p
ti

p=-1: anti-kt
p=0: Cambridge-Aachen



Jets in pictures

Areas denote where soft radiation would be “soaked up” by jet

First clusters all sorts 
of soft particles, 
which eventually 
become added to jet; 
more sensitive to 
underlying event, 
pile-up

Avoids this with the 
1/pt2 in dij



Jet substructure

Recent interest in using substructure of jets to distinguish signal
from background.  For example, highly-boosted Higgs will 
produce a “fat jet” with two b subjets inside.

Boosted tops, W/Z bosons have been studied in various contexts
G. Salam, 0906.1833 for refs

Undo last stage of clustering and look for 
significant mass drop, consistent with 
heavy particle decaying  to jets

Butterworth et al., 0802.2470



Example 2: Deep inelastic scattering and PDFs



Deep inelastic scattering

Putting one hadron in the initial state leads to DIS ⇒ still gives
most of our information on PDFs (ep at DESY)

qµ = kµ − k
′µ

Q2 = −q2

x =
Q2

2P · q

y =
P · q

P · k
lab=

E − E
′

E

Kinematics:



Hadronic tensor

Hermiticity, parity, current conservation allow us to simplify Wμν

Factorization tells us that EM probe scatters off partons

Wµν =
1
4π

∫
d4z eiq·z〈P |J†

ν(z)Jµ(0)|P 〉

=
{

gµν − qµqν

q2

}
F1(x, Q2) +

{
Pµ +

qµ

2x

} {
Pν +

qν

2x

} F2(x, Q2)
P · q

EM current

Structure functions

dσ

dx dQ2
=

4πα2

Q4

{[
1 + (1− y)2

]
F1 +

1− y

x
[F2 − 2x F1]

}

PDFs

(Note: this really is field theory: )
Wilson line

Wµν =
1
4π

∫
d4z eiq·z

∫ 1

0

dξ

ξ

∑

a

fa(ξ)〈p|J†
ν(z)Jµ(0)|p〉p=ξP

fq(ξ) =
∫

dx−

4π
〈P |q̄a(y−)γ+W (y−, 0)a(0)|P 〉



Calculating the structure function

Calculate by inserting a complete set of states between currents;
at LO, have a single-quark final state:

Pµ =
Q

2x

(
1,!0, 1

)

pµ =
ξQ

2x

(
1,!0, 1

)

qµ =
(
0,!0,−Q

)

PS =
∫

ddpf

(2π)d−1
δ(p2

f )(2π)dδ(d)(q + p− pf )

=
2π

Q2
δ

(
1− x

ξ

)

Can isolate F2 with a projection operator:

F2 = RµνWµν

Rµν =
2x

d− 2

{
gµν − 4 (d− 1)

x2

Q2
PµP ν

}

=
∑

q

e2Q2
q

∫
dξ fq(ξ) ξ δ(x− ξ)

=
∑

q

e2Q2
q x fq(x)

F2 =
1
4π

∫
dξ

ξ

∑

q

fq(ξ)×
PS

2N
×Rµν×



Scaling

No Q2 dependence in F2 ⇒ scaling, comes from scattering 
off point-like constituents of proton

Clearly a good approximation, but 
also clearly violated
Goal: check to see that QCD 
reproduces the scaling violation
Possible NLO real-emission terms:

⇒ we’ll do the quark 
pieces and quote the 
answer for these



Real-emission phase space

Focus on new aspects with respect to e+e- → hadrons; first, 
derive a useful parameterization of the phase space

PS =
1

(2π)d−2

∫
ddpfddpgδ(p2

g)δ(p
2
f )

× δ(d)(q + p− pf − pg)

=
Ω(d− 2)
4(2π)d−2

∫ 1

0

[
Q2y(1− y)

ξ

x

(
1− x

ξ

)]−ε

p · pg =
ξ

2x
Q2y

pf · pg =
ξ

2x
Q2

(
1− x

ξ

)



Real-emission matrix elements

Spin, color summed/averaged+projected matrix elements; focus
on the potentially divergent terms

Need to integrate over y, include

|M̄|2 = 4CF e2Q2
q g2

sµ2ε





pf · pg

p · pg
+

p · pg

pf · pg
+

Q2p · pf

pf · pg p · pg
+ ...︸︷︷︸

finite terms






1
4π

∫
dξ

ξ
fq(ξ)

F (1),real
2,q = e2Q2

q x
αs

2π

1
Γ(1− ε)

[
Q2

4πµ2

]−ε (
x

ξ

)ε (
1− x

ξ

)−ε

×
∫ 1

x

dξ

ξ
fq(ξ)

{
−CF

ε

1 + (x/ξ)2

1− x/ξ
− 2CF

x/ξ

1− x/ξ
+ ...

}

This term is bad news, no way it 
can cancel against virtual 
correction, which are δ(x-ξ)

Looks like Pqq ⇒ 
collinear singularity

Notice the 
singularity when x= 
ξ ⇒ soft singularity



Factorization of  IR singularities

Solution: must absorb initial-state collinear singularity into
PDF.  Redo calculation with fq → fq,0, a bare PDF.  Choose 
the bare PDF to remove 1/ε pole. PDF sensitive to IR QCD.
Must also add virtual corrections, deal with the x=ξ soft singularity
of real emission.  Correct way to do so is with plus distributions.
∫ 1

0
dx f(x) [g(x)]+ =

∫ 1

0
dx g(x) [f(x)− f(0)] ⇒ if g ∼1/x, removes singularity

F2,q = e2Q2
q x

∫ 1

x

dξ

ξ
fq,0(ξ)

{
δ(1− x/ξ) +

αs

2πΓ(1− ε)

[
Q2

4πµ2

]−ε [
−1

ε
Pqq(x/ξ) + finite

]}

Pqq(x) = CF

[
1 + x2

[1− x]+
+

3
2
δ(1− x)

] (
⇒

∫ 1

0
Pqq(x) = 0

)

fq(x, µ2) = fq,0(x) +
αs

2π

∫ 1

x

dξ

ξ
fq,0(ξ)

{
−1

ε
Pqq(x/ξ) + C(x/ξ)

}

F2,q = e2Q2
q x

∫ 1

x

dξ

ξ
fq(ξ, µ2)

{
δ(1− x/ξ) +

αs

2π

[
Pqq(x/ξ) ln

Q2

µ2
+ finite

]}

MS: C chosen to 
remove ln(4π)-γE

quark-number conservation

_



Scale variation and DGLAP

Pole turns into a ln(μ2) dependence ⇒ F2 must be independent 
of this arbitrary factorization scale, which leads to an evolution
equation for the PDF.

Inclusion of the gluon-initiated partonic processes:

d fq(x, µ2)
d lnµ2

=
αs

2π

∫ 1

x

dξ

ξ
fq(ξ, µ2)Pqq(x/ξ) ⇒ DGLAP equation

Leads to a ln(Q2) dependence of F2 ⇒ explains the observed scaling violation

d

d lnµ2

(
fq(x, µ2)
fg(x, µ2)

)
=

αs

2π

∫ 1

x

dξ

ξ

(
Pqq(x/ξ) Pqg(x/ξ)
Pgq(x/ξ) Pgg(x/ξ)

) (
fq(x, µ2)
fg(x, µ2)

)

F2,q = e2Q2
q x

∫ 1

x

dξ

ξ
fq(ξ, µ2)

{
δ(1− x/ξ) +

αs

2π

[
Pqq(x/ξ) ln

Q2

µ2
+ finite

]}

+ e2Q2
q x

∫ 1

x

dξ

ξ
fg(ξ, µ2)

{
αs

2π

[
Pqg(x/ξ) ln

Q2

µ2
+ finite

]}



Determining PDFs

Enter every hadron collider prediction!
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Fits by CTEQ, 
MSTW, ABKM, 
NNPDF

Only known at NLO

DIS, fixed-target 
DY, Tevatron jets
+W,Z



PDF errors

Published sets come with errors... what do they mean?

CTEQ 6.6, http://durpdg.dur.ac.uk/

Only error included!

Review by J. Owens at CTEQ 2007 summer school,
http://www.phys.psu.edu/~cteq/schools/summer07/

Two recent examples...

http://durpdg.dur.ac.uk
http://durpdg.dur.ac.uk
http://www.phys.psu.edu/~cteq/schools/summer07/
http://www.phys.psu.edu/~cteq/schools/summer07/


PDF error examples

CTEQ, P. Nadolsky et al. ‘08

before 
mass 

effects

after

Inclusion of mc, mb suppresses F2 at 
low Q2 ⇒ increase u,d to compensate

6-7% increase in LHC W, Z predictions

MSTW 2008 PDF release arXiv:0901.0002

Run II inclusive jet data
Quark-mass effects
Gluon density decreased at x∼0.1

MH=170 GeV Higgs at Tevatron (pb):

∼10-15% decrease in predicted cross section !
Previous 90% CL error: ±5%

Anastasiou, Boughezal, FP 0811.3458

Keep in mind for LHC applications...



Example 3: Higgs production at NLO



Improved normalization and smaller residual uncertainty
Better description of distribution shapes
First serious quantitative prediction only at NLO

NLO at hadron colliders

W+jets

BLACKHAT: Berger et al., 0907.1984 Z. Nagy



Higgs production in gluon fusion

Naive estimate of magnitude: αs/π∼few percent; why so large?

K=σNLO/σLO

everything you ever wanted to 
know about Higgs physics: 
Djouadi, hep-ph/0503172, 173



Effective interactions

Can get exact 2-loop NLO corrections without effective interaction 
(Djouadi, Graudenz, Spira, Zerwas 1995), but next term too tough

Effective field theory: exploit heavy mass of virtual particles

Two scales: 
MHiggs, mtop

Only mtopOnly MHiggs O(M2Higgs/4m2top)

= −i
αs

3πv

{
1 +

11
4

αs

π

}
δab [p1 · p2g

µν − pν
1pµ

2 ]

(also cubic, quartic gluon vertices)



Effective interactions

Can get exact 2-loop NLO corrections without effective interaction 
(Djouadi, Graudenz, Spira, Zerwas 1995), but next term too tough

Effective field theory: exploit heavy mass of virtual particles

Two scales: 
MHiggs, mtop

Only mtopOnly MHiggs O(M2Higgs/4m2top)

Leff =
αs

12π

{
1 +

11
4

αs

π

}
h

v
F a

µνFµν
a

derived in backup slides



Tree-level

σh1h2→h =
∫

dx1 dx2fg(x1)fg(x2) σ̂(z)

+ smaller partonic channels

(z = mh2/x1x2s)

|M̄|2 =
1

256(1− ε)2
× |M|2 =

ŝ2

576v2(1− ε)

(αs

π

)2

PS

2ŝ
=

π

ŝ2
δ(1− z) (with ŝ = x1x2s)

σ̂0(z) = σ0 δ(1− z) =
π

576v2

(αs

π

)2
δ(1− z)



Gluon-fusion: virtual

Virtual:

UV renormalization: counterterm for αs at leading order

Leading soft+collinear singularity; emitting 
gluons from gluons gives color factor CA=3

Full d-dimensional LO First term in beta-function

Number of light fermions

= σ0
αs

π
Γ(1 + ε)

(
ŝ

4πµ2

)−ε {
−13

4ε
− 83

12

}
δ(1− z)

= σ0
αs

π
Γ(1 + ε)

(
ŝ

4πµ2

)−ε {
− 3

ε2
+

1
4ε

+
47
12

+ 2π2

}
δ(1− z)

= σ̂(d)
0 (z)

αs

π

Γ(1 + ε)
(4π)−ε

1
ε

[−2 b0]

= σ0
αs

π

Γ(1 + ε)
(4π)−ε

{
−11

2
+

NF

3

} [
1
ε

+ 1
]

δ(1− z)



Gluon-fusion: real radiation

Real:

︸︷︷︸
singular

⇒ (1− z)−1−2ελ−1−ε(1− λ)−1−ε

singular regulator

λ→0,1: collinear
z→1: soft

Phase space :
1
2ŝ

∫
ddpg

(2π)d

ddpH

(2π)d
(2π)δ(p2

g) (2π)δ(p2
H −M2

H) (2π)dδ(d)(p1 + p1 − pg − pH)

=
1

16πŝ

s−ε

(4π)−εΓ(1− e)
(1− z)1−2ε

∫ 1

0
dλ λ−ε(1− λ)−ε

⇒ t̂ = (p1 − pg)2 = −ŝ(1− z)λ, û = (p2 − pg)2 = −ŝ(1− z)(1− λ)

|M̄|2 = 24αsσ0

{
(1− 2ε)
(1− ε)

M8
H + ŝ4 + t̂4 + û4

ŝt̂û
+

ε

2(1− ε)2
(M4

H + ŝ2 + t̂2 + û2)2

ŝt̂û

}



Real radiation and plus dists.

Extract singularities using plus distribution expansion

λ−1−ε = −1
ε
δ(λ) +

1
[λ]+

− ε

[
ln λ

λ

]

+

+O(ε2), etc.

∫ 1

0
dxf(x)[g(x)]+ =

∫ 1

0
dx [f(x)− f(0)] g(x)

= σ0
αs

π

(
ŝ

4πµ2

)−ε






cancels virtual poles︷ ︸︸ ︷[
3
ε2

+
3
ε

]
δ(1− z)−6

ε

1
[1− z]+

+
6z(z2 − z + 2)

ε

+ (3− π2) δ(1− z)− 6
[1− z]+

+ 12
[
ln(1− z)

1− z

]

+

− 12z(z2 − z + 2)ln(1− z)− 11
2

+
57z

2
− 45z2

2
+

23z3

2

}

1/Γ(1-ε)



Remaining terms

PDF renormalization: counterterm for initial-state collinear sings.

Effective Lagrangian correction:

= 2 σ̂(d)
0 (z)

αs

2π

Γ(1 + ε)
(4π)−ε

1
ε
Pgg(z)

= σ0
αs

π

Γ(1 + ε)
(4π)−ε






(
11
2
− NF

3

)
δ(1− z)

︸ ︷︷ ︸
cancels UV counterterm

+
6

[1− z]+
− 6z(z2 − z + 2)

︸ ︷︷ ︸
cancels real radiation






[
1
ε

+ 1
]

subtracting Pgg from PDF same as adding to 
partonic cross section

one for each PDF

= σ0
αs

π

11
2

δ(1− z)



Gluon fusion: final result

Arrive at the final NLO correction

(M2/s≤z≤1)
(integration over 
PDFs⇒integration 
over z)

First source of large correction: 11/2+π2 ⇒ 50% increase
Second source: shape of PDFs enhances threshold logarithm

Assume fi∼(1-x)b; plot L for various b
Look for peak near z≈1

σhad = τ

∫ 1

τ
dz

σ(z)
z

L
(τ

z

)

L(y) =
∫ 1

y
dx

y

x
f1(x)f2(y/x) (partonic luminosity)

b~2 (valence)

b~10 (gluon)

⇒Sharp fall-off of gluon PDF 
enhances correction

∆σ = σ0
αs

π

{(
11
2

+ π2

)
δ(1− z) + 12

[
ln(1− z)

1− z

]

+

− 12z(−z + z2 + 2) ln(1− z)

− 11
2

(1− z)3 + 6 ln
ŝ

µ2

[
1

[1− z]+
− z(z2 − z + 2)

]}



Inclusive Higgs at NNLO: scale variation

Full calculation at NNLO in the EFT

virtual-virtual real-virtual real-real

Harlander, Kilgore ‘02; 
Anastasiou, Melnikov ‘02; 
Ravindran, Smith van 
Neerven ‘03

Scale variation, 
especially at LO, can 
badly underestimate 
error!



Survey of Current Topics



Recursion relations

Can go to high multiplicity at LO using recursion relations rather 
than diagrams (Berends-Giele, Cachazo-Svrcek-Witten, Britto-Cachazo-Feng)

Gleisberg et al., 0808.3672

Feynman diagrams
Berends-Giele



Merging LO with PS

Want to attach parton shower: describes soft/collinear jets, very 
high multiplicity allows connections to hadronization
Don’t want to double count emissions from diagrams and PS!

CKKW matching (for W+jets): 
(Catani, Krauss, Kuhn, Webber hep-ph/0109231)); also MLM matching (Mangano)

Define jet resolution parameter Qcut

Select W+n jet process according to
Generate shower starting from this configuration
Reweight internal lines with Sudakov factor
Veto emissions above Qcut

Pn =
σn∑
i σi

Shower from 
W+0 jets

Shower from 
W+1 jet  / GeV Wp

0 20 40 60 80 100 120 140 160 180 200

 [ 
pb

/G
eV

 ]
 W

 
/d

p
!d

-210

-110

1

10

210

SHERPA

 Wp
W + 0jet
W + 1jet
W + 2jet
W + 3jet
W + 4jet
D0 Data

Pure PS too soft
Krauss et al., hep-ph/0409106



Available NLO results

Corrections can be surprisingly large (time-like π2, phase-space 
edges) ⇒ should have NLO for all processes, what is known?
Roughly: 2→2 known (review of techniques: Denner 0709.1075), 2→3 challenging (spurious 
singularities, algebraic complexity) but doable, very few 2→4 results known

Partial listing at http://www.cedar.ac.uk/hepcode/

MCFM (Campbell, Ellis): V+≤2 jets, VH, H+≤1 jet, QQ
NLOJET++ (Nagy): ≤3 jets
DIPHOX (Aurenche et al.): γγ, γ+jet
VBFNLO (Arnold et al.): many vector-boson fusion signals, backgrounds
...

Some examples:

from L. Reina



NLO difficulties

Techniques known to handle real radiation contributions
already discussed phase-space slicing
Dipole subtraction: construct approximations that reproduce full QCD in singular
limits, are analytically integrable (dipoles); cancel poles, numerically integrate
full QCD − dipoles (Catani, Seymour hep-ph/9605323)

Hard part are (were?) the loops for 2→3 and beyond...

Factorial growth of diagrams and 
enormous algebraic expressions, final 
results often simpler then intermediate 
steps ⇒ better organizing principle?



Unitarity and NLO amplitudes

Put loop propagators on-shell (“cut” them) to 
get imaginary parts from trees

Can decompose 1-loop 
amplitudes into basis of 
scalar integrals:
Try to isolate box coefficients ai by cutting 4 propagators
Only find a solution for complex momenta Britto, Cachazo, Feng 2004

No 1-loop diagrams!
Just compute tree 
graphs... and we know 
recursive techniques, 
can do numerically

Some success using this+singular limits to 
construct loops from trees for multi-leg 
processes Bern, Dixon, Dunbar, Kosower, 1990s



2→4 at NLO

W+3 jets

Unitarity-based approach
Large NC: Rocket 
0906.1445, R. K. Ellis, Melnikov, Zanderighi

Full QCD: Blackhat 
0907.1984, Berger, Bern, Dixon, Cordero, Forde, 
Gleisberg, Ita, Kosower, Maitre
(Even preliminary W+4 jets from 
Blackhat)

NLO
LO

σ [fb]

µ0/2 < µ < 2µ0

mt = 172.6 GeV

pp → t̄tbb̄ + X

mbb̄, cut [GeV]
20018016014012010080604020

10000

1000

100

10

ttbb: background to ttH, 
important for bottom 
Yukawa measurement

Traditional Feynman diagrams
Bredenstein, Denner, Dittmaier, Pozzorini 0905.0110



Merging NLO with PS

Want to combine NLO with parton shower ⇒ first hard emission 
described by NLO calculation, loops give right normalization
Need to avoid double counting real-emission corrections
Two working programs: MC@NLO (Frixione, Webber), POWHEG (Frixione, 
Nason, Oleari)

full real radiation in modifed 
Sudakov factor

Virtual corrections included 
together with counterterms

Correct normalization to O(αs), matches to 
NLO hard emission at high pT, and shower at low pT

Correct at low pT Matches to NLO at high pT



Computing σ: NNLO

σ =
LO︷︸︸︷
σ0 +

NLO︷ ︸︸ ︷
αs

π
σ1 +

NNLO︷ ︸︸ ︷(αs

π

)2
σ2 + . . .

When is NNLO necessary?

When NLO corrections are large, 
and NNLO is needed to check 
expansion (gg→H)
For benchmark processes where high 
precision is needed (DIS, Drell-Yan 
for PDFs, e+e-→3 jets for αs)



Integration-by-parts

Use optical theorem, map to the calculation of loop integrals 

Integration-by-parts to reduce loops integrals to a few “master 
integrals” Chetyrkin, Tkachov 1981

σ(γ*→hadrons)=Im(γ*→ γ*)/s

Real-Real cut Virtual-Virtual cut

p

I(ν1, ν2) =
∫

ddk
1

k2ν1(k + p)2ν2

Set
∫

ddk
∂

∂kµ

[
kµ

k2ν1(k + p)2ν2

]
= 0

Derive (d− 2ν1 − ν2)I(ν1, ν2)− ν2I(ν1 − 1, ν2 + 1) + ν2p
2I(ν1, ν2 + 1) = 0

Apply to I(1, 1)⇒ I(1, 2) = −d− 3
p2

I(1, 1)

⇒ algebraically relate different integrals

Gorishny, Kataev, 
Larin 1988; 
Surguladze, 
Samuel 1991



1,2-scale problems

Same IBP technology can be applied to hadron collider 
cross sections (Anastasiou, Melnikov hep-ph/0207004) ⇒ first applied to Higgs

W, Z rapidity distributions: depend on M2/s and Y ⇒ introduce 
a fictitious particle to allow use of IBP with rapidity constraint

phase-space constraint︷ ︸︸ ︷

δ

(
pV · p1

pV · p2
− u

)
→

fictitious propagator︷ ︸︸ ︷
pV · p2

pV · (p1 − up2)− i0
−c.c.

Important constraint on 
PDFs from fixed-target 
scattering (high-x quarks)

Boson Rapidity, |y|
0 0.5 1 1.5 2 2.5 3

/d
y

!
 d

!
1/

0

0.1

0.2

0.3 * Rapidity "Z/

 Run II Data#D

NNLO, MRST ’04

-1DØ, 0.4 fb

Anastasiou, Dixon, Melnikov, FP 2003

(
u =

x1

x2
e−2Y

)



Fully differential NNLO

Desirable to account fully for experimental constraints 
How to arrange singularity cancellation between real and virtual 
graphs for numerical integration?

Utilize regulators in explicit 
phase-space parametrizations

“Entangled” singularities: I =
∫ 1

0
dx dy

λε
1λ

ε
2

(λ1 + λ2)2

I =
∫ 1

0
dx dy

λ−1+2ε
1 λε

2

(1 + λ2)2
+

∫ 1

0
dx dy

λ−1+2ε
2 λε

1

(1 + λ1)2

Use singular structure of QCD to build 
analytically-integrable subtraction terms

Anastasiou, Melnikov, FP 
2003-2004 for Higgs, W, Z

Gehrmann, Gehrmann de-Ridder, 
Glover 2004-2007 for e+e-→3 jets; 
Catani, Grazzini 2007 for Higgs; many 
others



Phenomenology at NNLO
Higgs at LHC:

Anastasiou, Melnikov, 
FP hep-ph/0501130

W,Z at LHC:

Melnikov, FP 
hep-ph/0609070 Include acceptance cuts, spin 

correlations for percent-level “partonic-
luminosity monitor” at LHC ⇒ 
normalize other cross sections to this, 
small experimental and theory errors

NNLO corrections have 
kinematic dependence!

Dittmar, Pauss, Zurcher 
hep-ex/9705004



Antenna subtraction at NNLO

Progress towards constructing subtraction technique for 
2→2 processes at the LHC Boughezal, Gehrmann-De Ridder, Ritzmann 1001.2396

Then integrate over unresolved PS using IBP technology



Conclusions

from T. LeCompte, CTEQ 
2007 summer school

Can understand a lot by considering IR singularities of 
QCD amplitudes: leads to parton shower, jet 
definitions, ...
Serious quantitative predictions at LHC require NLO; 
multi-leg methods have seen revolutionary advances, 
very active area!
Effective field theory methods can simplify calculations 
with multiple scales
Techniques exist for merging LO/NLO+PS
NNLO needed for W, Z, H, PDFs+αs, jet energy scale, 
top and V pairs; active area!
Remember PDF errors only reflect experimental errors 
on used data sets!



Backup: Effective Field Theory for the Higgs



Decoupling constants

Green’s functions in full and effective theories must match
in the mt→∞ limit.

Equate Green’s functions to derive decoupling constants
(matching calculation)

primes denote 
effective theory 
quantities

useful review: 
M. Steinhauser, 
hep-ph/0201075

EFT calculations in dim. reg. 
usually scaleless ⇒ vanishes

Simplify by doing matching 
calculation at p2=0

⇒ just tadpole diagrams 
depending on mt



Wilson coefficient derivation

For the physical amplitude gg→h, only one operator contributes:

Do the matching calculation between full/EFT

LHiggs
eff = −h

v
C0

1O0
1

O0
1 = (G0,′,a

µν )2

Wilson coefficient

(for Higgs, a more elegant way to derive based on low 
energy theorems; see Kniehl, Spira Z. Phys. C 69 (1995))

Γ0,full
µν (p1, p2)δab = i

∫
d4xd4y eip1·xeip2·y〈T

[
G0,a

µ (x)G0,b
µ (y)h(0)

]
〉

=
i

ξ0
3

∫
d4xd4y eip1·xeip2·y〈T

[
G′,0,a

µ (x)G′,0,b
µ (y)h(0)

]
〉

= i ξ0
3

∫
d4xd4y eip1·xeip2·y〈T

[
G′,0,a

µ (x)G′,0,b
µ (y)h(0)

]
〉1PI

= −4
ξ0
3C0

1

v
[gµνp1 · p2 − pν

1pµ
2 ] δab

ξ0
3C0

1

v
= −1

4

(
p1 · p2gµν − pµ

1pν
2 − pν

1pµ
2

(d − 2)(p1 · p2)2
Γ0,full

µν (p1, p2)
)

p1=p2=0



Calculational steps

Get the decoupling constant (ξ3)0:

Replace bare quantities with renormalized ones:

Use decoupling constants to go to a theory with five active flavors

Πt
G(0) =

α0
s

π

[
1
6ε
− 1

6
ln

(m0
t )2

µ2
+ ε

(
π2

72
+

1
12

ln2 (m0
t )2

µ2

)]

+
(

α0
s

π

)2 [
3

32ε2
+

1
ε

(
− 1

64
− 3

16
ln

(m0
t )2

µ2

)
+

91
1152

+
π2

64
+

3
16

ln2 (m0
t )2

µ2

]

p1=p2=0

α0
s = Z2

gα(6)
s

m0
t = Zmmt

α(5)
s = ξ2

gα(6)
s

ξg = 1 +
α(6)

s

π

1
12

ln
m2

t

µ2

Derive coupling constant 
from gluon-ghost vertex:



Calculational steps

Get the bare Wilson coefficient:

Operator O1 requires renormalization, RG invariance gives 
inverse renormalization to C1; since it is (Gμν)2, clearly 
connected to the beta-function.

Combine all pieces, arrive at the final result.

p1=p2=0

C1 =
1

Z11
C0

1

1
Z11

= 1 +
α(5)

s

π

β0

ε
+

(
α(5)

s

π

)2
β1

ε

C1 = −1
3

α(5)
s

π
− 11

12

(
α(5)

s

π

)2

ξ0
3 C0

1 =
α0

s

π

{
−1

3
+ ε

1
3
ln

(m0
t )2

µ2

}
− 1

4

(
α0

s

π

)2



Integration-by-parts

IBP identities for the calculation of the bare Wilson coefficient:

Can solve via Gaussian elimination (S. Laporta 2000), for which 
implemented algorithms exist (Anastasiou, Lazopoulos 2004)

One MI exists: Tri(1,1,0)

Tri(ν1, ν2, ν3) =
∫

ddk1d
dk2

1
[k2

1 −m2
t ]ν1 [k2

2 −m2
t ]ν2 [(k1 − k2)2]ν3

0 = (−ν3 − 2ν1 + d) Tri(ν1, ν2, ν3)− Tri(−1 + ν1, ν2, 1 + ν3)ν3

− 2 Tri(1 + ν1, ν2, ν3)m2
t ν1 + Tri(ν1,−1 + ν2, 1 + ν3) ν3

0 = (ν3 − ν2) Tri(ν1, ν2, ν3)− Tri(−1 + ν1, 1 + ν2, ν3) ν2 + Tri(−1 + ν1, ν2, 1 + ν3) ν3

− Tri(ν1,−1 + ν2, 1 + ν3) ν3 + Tri(ν1, 1 + ν2,−1 + ν3) ν2 − 2 Tri(ν1, 1 + ν2, ν3)m2
t ν2

0 = (ν3 − ν1) Tri(ν1, ν2, ν3)− Tri(−1 + ν1, ν2, 1 + ν3) ν3 − Tri(1 + ν1,−1 + ν2, ν3) ν1

+ Tri(1 + ν1, ν2,−1 + ν3) ν1 + Tri(ν1,−1 + ν2, 1 + ν3) ν3 − 2 Tri(1 + ν1, ν2, ν3)m2
t ν1

0 = (−ν3 − 2ν2 + d) Tri(ν1, ν2, ν3) + Tri(−1 + ν1, ν2, 1 + ν3) ν3

− Tri(ν1,−1 + ν2, 1 + ν3) ν3 − 2 Tri(ν1, 1 + ν2, ν3)m2
t ν2

Tri(2, 3, 2) = Tri(1, 1, 0)
(−2 + d) (d− 4) (−6 + d)2

64 m10
t (−7 + d)

, etc.


